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ABSTRACT. The concept of symmetric tensor product of a Hilbert space is used
to construct a product measure of orthogonally scattered measures. The result
is applied to the construction of an Lz-valued product stochastic measure
{(p.s.m,) cf non-identically distributed Lz-valued independently scattered
measures. Using the theory of vector valued measures we construct multiple
integrals with respect to the p.s.m. A relationship between the theory of
multiple stochastic integrals and the theory of vector valued measures is

established.
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1. INTRODUCTION

Let (T,A) be a measurable space and (Q,F,P) be a probability space. The
random variable valued set function X on (T,A) is said to be an independently
scattered measure (i.s.m.) on (T,A) if for each sequence of pairwise disjoint
sets {Ak}k>1 in A, {X(Ak)}k>1 is a sequence of independent random variables on
Q,F,P) aﬁg -

0 (o)
XCUA) =] X(A) a.s.
k=1 K& k1 K

We say that X is an L2(@)-valued i.s.m. if X(A) belongs to L%(2,F,P) for each
A ¢ A and the above series converges in LZ(Q).

Let n > 1 and X ..,Xn be LZ(Q)-valued i.s.m.'s on (T,A). Define the

1
LO(Q)-valued product set function X1><...xXn on the semifield of rectangles of
_ ™ by
Zii ) Xlx...xxn(Alx...xAn) = Xl(Al)"'xn(An) 1.1

where Ai e A i=1,...,n., Extend X1X...xxn in the usual way to be an additive
set function on the field generated by the rectangles of ™. Engel and
Kakutani ([4]) have considered the extension of X1X...xxn to an LZ(Q)-countably
additive measure on (Tn,An). The case n = 2 has been studied by Rosinski and
Szulga [15). 1In both works additional higher moment conditions are imposed on
the i.s.m.'s Xl,...,Xn to assure that the product stochastic measure Xlx...xXn
is LZ(Q)-Valued.

In this work we use the symmetric tensor product rather than the usual

product to obtain a vector valued measure on (Tn,An) denoted by Xlo...oxn, and

v ° called the symmetric tensor product measure (s.t.p.m.). It is such that for
\_",:

X, A.cAi=1,...,n

N, 1

-"’

. N ,

N Xlo...oxn(Alx...xAn) Xl(Al)@...oXn(An) (1.2)
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where ® means symmetric tensor product. By doing this we exploit the

LZ(Q)-valued property of X ..,Xn using Hilbert space methods.

1’
In general we consider the case when Xl""’xn are orthogonally scattered

measures (o.s.m.) on (T,A) (not necessarily stochastic) with values in any
real separable Hilbert space H (Masani ([11]), of which zero mean LZ(Q)-valued
i.s.m.'s are particular examples. Similar to the classical theory of real
valued product measures one can construct (Chevet [1, Th. 2.1]) an H®™-valued

0.S.m. Xle...exn on (Tn,An), where H"' is the n-fold tensor product of H and

® denotes tensor product. Moreover, if we consider a sequence of o.s.m.'s

Xt

product valued o.s.m. on (Tm,Am), where T = X Tand A~ = A (Perez-Abreu
i=1 i=1

(14, Th. 2.1.4}). However, in connection with stochastic processes and

on (T,A) with values in H, it is possible to obtain an infinite tensor

product stochastic measures the concepts of symmetric tensor product and the
Exponential Hilbert space of H (EXP(H)) are more useful. For example, EXP(H)
will be the common range of the different powers (in the symmetric tensor
product sense) of the s.t.p.m.'s.

In Section 2 of this work we establish a link between the spaces EXP(H)
and LZ(Q,O(H),P) where H is the Hilbert space direct sum of a Gaussian space
and a generalized Poisson space. This result extends the work of Neveu [12]
and Kallianpur [8] who established this link in the case H is a Gaussian space.

In Section 3 we take H to be a real separable Hilbert space and construct

the symmetric tensor product measure X1©...0Xn of the o.s.m. X ..,Xn with

1’
values in H. This is a vector valued measure with values in EXP(H). Then we
use the vector valucd measure approach to construct multiple integrals, i.e.

the latter are constructed as integrals w.r.t. the s.t.p.m.’'s using the theory

ot integration w.r.t. vector valued measures.
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In Section 4 we take Xl,...,Xn to be LZ(Q)—valued i.s.m.'s and apply the

results of the last two sections to construct an LZ(Q)-valued product stochastic

measure also denoted by XIO...GXn. In the construction of this measure we do

not need to assume additional higher moment conditions on Xl""’xn’ Further,

using the method of Section 3, we construct integrals w.r.t. X1®...®Xn, showing

that this approach includes the known centered multiple stochastic integrals of

151 [7) [13] and [16]. The measure X1®"'®Xn is different from the product

stochastic measure Xlx...xXn in {4]. Comparisons between the two measures is

the subject of Section 5.
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2. EXPONENTIAL SPACES

Let H be a real separable Hilbert space with inner product AREFReTE For
h, e H i=1,...,n let hla...ehn denote their n-fold tensor product and
define

1

S (he...eh ) = — % hn(l)e...ehn(n) (2.1)

where I = (N(1),...,lI(n)) is a permutation of (1,2,...,n) and the sum goes
over all such permutations. We recall that the n-fold symmetric tensor product
: on | en .. . .
Hilbert space H ' is the subspace of H  which is the closure of the finite
linear combinations of elements of the form (2.1), and that the operator Sn can
®
be extended to an orthogonal projection operator on H " whose range is H@n. We

write h.®,..6h = S (h.®,..®h ) and note that for h,,g. e H i =1,,..,n
1 n n 1 n i’%i

_1
<hie...eh , go...0g > = ET'Z <h <h (2.2)

1 n

H i n’gH(n)>H'

1281 H

Let us denote by H° the one dimensional space of real constants and by
EXP(H) the orthogonal direct sum of the subspaces H°" n > 0. This space is
called the Exponential space of H and in the mathematical physics literature
it is known as the Fock space. For the sake of completeness and further

reference we review some facts about this Hilbert space (see Guichardet [6]):

i) The elements of EXP(H) are interpreted as sequences h = (ho,hl,...)
h e H™ n >0 with inner product
<h,k> =] <h k> _ . (2.3)
e "29 1’1 HOn

ii) Of special interest are the ''exponential"” elements

expa(h) = (1,h, (2) /%% heH (2.9
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S which generate EXP(H) and whose inner product is given by
Y

<exp@(h),exp°(k)>e = exp (<h,k>H)- (2.5)

iii) For each n > 0 H@n is seen as a subspace of EXP(H) and for n # m H@n

and Hom are orthogonal with respect to the inner product <-,->e. Then we
can write

exp o (h) = J (n1)”Y/%°",

an

Let (R,F,P) be a complete probability space and Hg be a real Gaussian
space of random variables defined on (Q,F,P). It is well known (Neveu [12]

Kallianpur [8]) that

v o2
EXP(H) = L «,F8,p) (2.6)
where F® = g(H ) and for h ¢ H
g g
Y(exp @ (h)) = exp(h - (1/2)E(h%)) 2.7)

and that {y(exp @ (h)): h ¢ Hg} generates LZ(Q,Fg,P), where E(+) denotes expected

value.
A similar result is possible for the Poisson case: Let q be a centered

Poisson random measure on an arbitrary measurable space (S,E) with control

measure v and let
Hy = (1 (B): f e L2(s,E,v)} (2.8)

where Iq(-) denotes the isometric integral w.r.t. the o.s.m. q. The Hilbert
space of random variables Hq is called the generalized Poisson space associated

with q. The following result is Proposition 7.13 in Neveu [12] (sec also

Kreé [9]).
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PROPOSITION 2.1. Let v be a finite measure on (S,E). Then

n-s

EXP (H,) LZ(Q,O(Hq) P) (2.9)

where FJ = G(Hq) and for f ¢ L2(S,E,v)
N(S)

n(exp © (1.(F) = { T

(1 + f(Zj))}exp(—fo(s)dv(s)) (2.10)
i=1

where {zj}j>1 is a sequence of independent random elements, independent of

N(S) = q(S)-; v(S), each :j taking values in S and having distribution {v(S)}_lv(-).
The next theorem extends the above result to the case when v is a

o-finite measure on (S,E). For this situation Surgailis [16] has shown an

isometry between EXP(Hq) and LZ(Q,Fq,P). However we cannot use Surgailis’

result since he uses multiple Poisson integrals techniques to prove it, and we

need to proceed in the opposite direction, namely, we first have to identify

EXP(?h) and then construct product stochastic measures and multiple stochastic

integrals of q(see Section 4).

THEOREM 2.1. Let v be a o-finite measure on (S,E)}. Then

ne

BXP (1) L0, F4 py (2.11)

where F9 = I(H) and for € ¢ L2(s,E.v)

- N(Si)
dplexp @I (f1) ={ 01 1 (1+f(z§1)))exp(-f f(s)dv(s))} (2.12)
4 i=1 j=1 ) S.
i
where: i) Si i > 1 are disjoint sets in E, 0 < v(Si) < o and U S.1 = 8; (i1)
. i>1
for each i = 1,2,... and j = 1,2,... Zgl) is an Si-valued random element with
distribution given by the measure v(Si)"lv(-), and for cach i = 1,2,... V(Sj)

follows a Poisson distribution with parameter v(Si); (ii1) Z#l), N(Si)

i=1,2,..., 3 =1,2,... are mutually independent.
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In order to prove this theorem we will use the following technical result !

which proof follows easily.

LEMA 2.1. Let v and S, N(S,), z}l) i=1,2,...,i=1,2,... be as in

(i) - (iii) of the above theorem. If for some i > 1 g« Ll(Si,EnSi,v) then
NS, )

E(_n'

g2{) = ey (g-1)av.
=1 i

1

Proof of Theorem 2.1. We have to show the following three conditions:

a) for each f ¢ L2(S,E,v) o(exp © (1, ())) e L2(,F,p).

b) for fl’ fZ € LZ(S,E,v)

E(o(exp © (I (£)))o(exp o (I,(£7)))) = exp(Ugf £ dv).
¢) lo(exp @ (Iq(f))}:f € LZ(S,f,))} generates LZ(Q,Fq,P).

Since v is a o-finite measure on (S,E) there exists a sequence of sets

in E such that 0 < v(Si) <»and U Si = §. The existence of the
. i=1

random elements Zgl) i=1,2,..., 1=1,2,... satisfying (ii) and (iii) follows

Sitisg
from the construction of a Poisson random measure N with control measure v.
Let f ¢ LZ(S,E,v), then for each i>1 f belongs to LZ(Si,EnSi,v) and

Ll(Si,EnSi,v). Then by taking g = (1+f) in Lemma 2.1 we obtain

N(S,) .
Eln aefcexp (f fa)|=1 i=1,2,...
j=1 J S;
NGs ;) _
Then using (iii) G; = T (l+f(2§1)))exp(—fs fdv) is a sequence of independent
i=1 i
n
random variables with E(Gj) =1 1>1 and therefore D= T Gi is a martingale.
i=1

Next, using Lemma 2.1 with g=(1+f)2 and the independence of Zgl), N(Si)
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j=1,2,..., i=1,2,...

2

™
j=)
1t
n=3

N(S.)
. L (1) . _ 2, -2
El T (1+f(Z; ))exp(-JS fdv) | = exp(/_ f dv)<exp(fsf dv) < oo,
i=1 J i n -

21
J 'U Si

1=1
Then by the martingale convergence theorem Dn converges a.s. and in mean

square to ¢(exp @ (Iq(f))). Therefore

2
w N(Sl) -

3 2
Bl 1 aeEeD)em(-fg fdv)| = 1inE D2 = lim exp(/, £2dv)=exp (1 F dv) <
i=1 j=1 i o oo .
i=1 1

which shows (a).
Let fl,fz € LZ(S,E,V), then applying Leima 2.1 to g = (l+f1)(1+f7) one

shows 1in a similar way as above that
n N(Si)

. .. (D) ) 2.2
LteXp@(Iq(fl))exPQ(Iq(fZ)))_iiz iglE j21 (1+f1)(1+f2)(2j Jexp( fsi(f1+f2)dV)

=1lim I

exp (/g f,f,dV) = exp(/g f{f,dV)
noo i=1 i c i

proving (b)}.

Finally, to prove (c) let G ¢ LZ(Q,Fq,P) and suppose that

Eexpo(I (£))6) = 0 for all f ¢ L2(S,E,v). :
e have to show that (=0 a.e. dP o Using (2.12) we have that for all f<L7(S,E,Vv)
o [N(S{) a .
el ndr sz ) exp(-s £dv)ds] = 0.
i=1]j=1 ] S.

1

Next let 1 > 1 be fixed and for g « LZ(Si,EnSi,v) define {: S - R by

fit)y = g(t) t o« Si and zero if t ¢ Si' Then f ¢ LZ(S,E,v) and

X - S . . L RO o,
M.&MA..L»..ALA.‘M~_&L:Lu_L;.n_,:‘_;.,_i
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= N(S,)
) ' (1) - 2
3 E{ T  (1+g(Z:’))exp(-f gdv)G] =0 all gel (Si’ EnSi,v)
3 j=1 J 54
R Hence by Proposition 2.1 E(G|F}) = 0 a.s. where F{ = o(I_(g): gd,z(si, EnS; ),
? n . )
b and F? < F% al11 i>1. Thus for all n>1 E(G| v Fg)=0 a.s. since F?,...,Fg are
,4' . - - . i:l
Y n ©
h independent o-fields. Let Fn =vF then F9= vF_.
S oM i=1 1 n=1
;'§ Thus since E(Gz) < » it follows by the martingale convergence theorem that
» G=0 a.s. dP q and the theorem is proved.
F
: The last result of this section is a general one, in the sense that it
‘if identifies the exponential space of any Hilbert space H which is a direct
- sum of an arbitrary Gaussian space Hg and an arbitrary Poisson space Hq,
ZE where H and Hq are stochastically independent.
S &
- THEOREM 2.2. Let (R,F,P) be a complete probability space and q be a centered
Poisson random measure on a measurable space (S,E) defined on (9,F,P), with
ﬁ: o-finite control measure v and generating the Poisson space (2.8). Let Hg be a
ij Gaussian space on (Q,F,P) stochastically independent of the system of random
; variables Hq‘ Define the o-fields F& = O(Hg), Fa = o(Hq) and the Hilbert
P
v ‘e H=H e H . Then
::j spac e .
Y2 g rq
S EXP(H) = L°(Q,F5vF1,P) (2.13)
-:; - _ 2 g q .
i there tor h « H, h=h_+h, h eH, h ¢H, y: EXP(H) » ), FEVFY
- where for 1 g ¢ g € . Pq « Hy Y (H) ~ L°(Q,FovF',P) is
:i : defined by
s y(exp @ (h)) = y(exp @ (hg))cb(eXP J (hq)) (2.14)

where ¢ and ¢ are the isometries given in (2.7) and (2.12) respectively.




Iv

Proof. It tollows by the independence ot Hooand H\l that tor all h . H
"""" K

y(exp ® (h)) is an element of |7 (.. F“«r*,r» and that ko texpethii ™ = exprih 1,
p } ]

3

Next we shall prove that ‘.(cxpe®h - h . H- penerates |~ FEUY P 1oy

2 yr4
<« LT(R,FvF',P) and suppose that
E(Zy(exp @ (h)») = o tor cach h . o,

Then for all hg € Hg and hq . Hq Eilulexp o (hg))wfexpo(hq))) = (.,
But {4(exp @ (h_ )): h « H } and {¢(exp @ (h )): h H_} generat
7 Ly (exp ’ ( g)) g ol A b(exp @ ( q) q < Myl oe e
L“(Q,Fg,P) and L“(Q,Fq,P) respectively. Then for all A

q
Az e FU S

1€ Fé and

A oA =dP=0. But since the o-fields F& and FY are independent then
112

FEVFY is generated by the field C, of all finite disjoint unions of sets

AL A, A e FE A, e Fd. Thus since Z is P-integrable C = {A ¢ F: J\2dP = 0}

is a monotone class, and by the monotone class theorem

F2dP = 0V A ¢ FBFY
A

since C, < C. That is, Z = 0 a.e. dP and the theorem is proved.
0 FByFd




3. THE SYMMETRIC TENSOR PRODUCT MEASURE

Throughout this section we assume, unless otherwise stated, that (T,A)

is a measurable space, H is a real separable Hilbert space with inner product
SRRt and norm

»*7) I' lH'
on A, taking values in H and with corresponding finite control measures

Furthermore for n > 1 let Xi i=l,...,n be o.s.m.'s

by i=1,...,n. Define the signed measures “ij on A such that for i,j=1,...,n

uij(AnB) = <X; (A), Xj(B)>H- (3.1)
If il’jl""’in’Jn e {1,...,n} let uiljle...eui ; denote the real valued
n’n
product measure on (Tn,An) of My g seeealy 5 o
1’1 n’n

For Ai e A i=1,...,n define the H™-valued set function Xlo...@xn on

the semifield of rectangles of ™ by

X @...@Xn(A1X...xAn) = Xl(Al)©...©Xn(An). (3.2)

1

This vector valued function can be extended in an additive manner to the field
generated by the rectangles in A",  The next result gives the extension of

. . ® . )
X1©...eXn to the o-field An. This H n—valued measure is called the symnretiic

tenscen product measute, Observe that for each n>1 it is an EXP(H)-valued

measure.

THEOREM 3.1. Under the above hypotheses and notation there exists a unique
H°"-valued measure X1©...©Xn on (Tn,An) such that (3.2) is satisfied for

A; - Ad=l,...,n and for A e Al

||X1®...@Xn(A)[|;

on < H1®- -8 (A) (3.3)
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Proof. Let Xla...exn be the }Fm-valued 0.S.m. on (Tn,An) such that

Xlﬁ...@Xn(AIX...XAn) = Xl(Al)G...OXn(An) and

2
||X1®...exn(A)||H@n= ule...@un(A) (3.4)
(see |1, Th. 2.1] or |14, Th. 2.1.3]). tor A « A" define

Xl@...oxn(A) = Sn(XI@...eXn(A))

where Sn is the projection operator on H with range H™ defined in (2.1). Then

HX1@°"©Xn(A)”Hen < lle@---@Xn(A)HH@m

and the o-additive property of Xla...exn in K" follows by the linearity and

continuity of Sn. Finally (3.3) follows from (3.4) and the last inequality. Q.E.D,
Expression (3.3) gives an upper bound for the nomm of X10...0Xn(A). We

shall now obtain an exact expression for this norm which uses the signed

measures ”ij defined in (3.1). For A ¢ A" and 1 = (n,...,In)) a

permutation of (1,...,n) define

= {(ty,eennt) e ™ (t (3.5)

H(l)""’tﬂ(n)) e AL

LEMMA 3.1. a) For A< A" and B ¢ A™

<X O...oXn(A),x]@...oxm(B)>e=6nm<x

1 @...oxn(A),Xlo...oXn(B)>

I {@n

= ( t i = 1 n,
= ((Smn/n_)rzluln(ﬂa...@unn(n) (AnB") (6““/;1,)]21111“(1)@...@unn(n) (A nB), ‘

b) For A ¢ A"

[1X,0...0X (A)I

= iyl |
l !en (n-) %Uln(l)a---sunﬂ(n)(-/\!"/\ ).

R

AT A g
o WIT IR e
e f..'rl‘f:‘xﬁ"j.';'_d‘ Sl
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Proof. Since Xlo...oxn and XIO...oXm are ™" and H™ valued respectively and

H*" and H*™ are orthogonal subspaces of EXP(H), then xlo"'Oxn and Xlo...oXm

are orthogonal for n#m. Hence assume n=m and let A = Alx...XAn, B = BIX...XB
where Ai’Bi e A i=1,...,n. Then from Theorem 3.1, (3.2) and (2.2)

<X1@...@Xn(A),X1@...oxn(B)>”Gn = <X1(A1)o...eXn(An),Xl(Bl)o oXn(Bn)>Hon

(“’)-1% XA Xy By 2me K B Xy By ) m

)(A nB

-1
(D 72 v @By o) BBy

(n!)-IIZI um(l)a...aunn(n)((Alx...xAn) n (le.,,xBn)n)

-1 i
) % ulﬂ(l)e...sunn(n)(AnB ).
which shows (a) if A,B are rectangles. The result is extended in an obvious
manner to the field generated by the rectangles. Finally an approximation
argument shows (a) for any A,B ¢ AR (see details in [14]). The proof of (b)

follows from (a) by taking B=A.

COROLLARY 3.1. Let A®D = {A e Al .L\‘T = A for all N}. Then the vector measure

xl@...@xn is an H™-valued orthogonally scattered measure on (Tn,AGn) with

en .
control measure u  given by

on an
u .

A) = (n!)‘lg My ® - S B A < A

Proof. Since A « AT implies An = A for all N, then A n An = A for all @i

and therefore using Lemma 3.1

LU I
P

VT
A

[ g

3
‘vt
!

PIRES
)

LR
r*aty »
R SRR,
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|IX1°"'°Xn(A)‘|i®n = ("!)-lguln(l)e"'eunH(n)(A)

from which the corollary follows.

The above results can be obtained, with the obvious modifications, if
the measures Hp»eeool, are assumed o-finite. However we have restricted
ourselves to the case where each o.s.m. is bounded and defined on a o-field.
The reason for these requirements is that we are primarily interested in using
the well established theory of vector valued measures in order to construct
multiple integrals w.r.t. Xle...@Xn, and in this theory these requirements are
needed. Moreover from now on we will assume that T = [0,1], A = B(T) and
Hys---oW, are finite non-atomic measures. For terminology and concepts from
the theory of vector valued measures we refer to Diestel and Uhl [2] and
Kussmaul [10]. An important notion in this theory is that of semivariation
of a vector valued measure. It plays a key role in constructing integrals.
The next lemma gives useful upper and lower bounds for the semivariation of

the EXP(H)-valued measure Xlo...oxn on a set A ¢ An, which we denote by

sv(X1©...®Xn;A).

LEMA 3.2, For A « A"

(1) Mo .eun(A)}l/Zisv(Xl@. oK M) <luje. ..oy (A) 172, (3.6)

Proof. For each permutation M = (Ii(1),...,M(n)) of (1,...,n) let

TH = {(epeat) € T, tﬂ(1)<°"<tﬂ(n)}' (3.7)

Note that if T and N* are two distinct permutations of (1, ..,n), then Tg and

. N R . )
5 4 are disjoint. Hence since the measures ys-.+»H, are non-atomic




uy®...ou (A) = 121 ulo...aun(An1‘n‘). (3.8)

n* s s . .
Next for each T (Tﬁ) n Tg = ¢ for each N* distinct from the identity

permutation. Thus using Lemma 3.1(b)
2 -1
L% o, (A0 T ] gn = ()b ouy ()
and from Proposition 11 in Diestel and Uhl [2]

2 < ) {sv(Xle...eXn;A}2

T

n! % ||X1©...@Xn(A n Tﬁ)||

2 a2
(n!) {sv(Xle...oXn,A}

from which the first inequality follows. The proof of the second inequality in (3.6)
follows using the definition of sv(xle...oxn;A) and the fact that for all

finite collection of real numbers (aj) j=1,...,m such that laj| <1 and
m

Al»---»A disjoint elements in A" such that U A=A, the following inequality
=1 -
holds
v 2
“jzl'jX1°"'°xn(Aj)|'H®n < uje...eu (A). Q.1

The next two consequences of the above lemma characterize convergence in

Xlo...oxn-measure Kussmaul ({10]) in terms of the control measures TP T

vy N . \ : n . . .
(CROLLARY 3.2, For a sequences {Am;mil in A sv(Xlo...Oan,ﬁn) goes to zero if and

onlv 1f ule...sun(Am) goes to zero as m -~ «,

qun%{gg[;&}. A sequence of real valued An-measurable functions (fm)m>1
converges in Xlo...oxn-measure to a real function f if and only if fm converges
to [ in ula...ﬁun-nwasure.

We now present the definition of an X1o...oxn-integrab1e function in the

sense of the theory of integration with respect to bounded vector valued

measures ([10, Def. 10.3]).
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DEFINITION 3.1. Let f(t) be an A"-measurable simple function on Tn, that is

k
£(t) =}
j=1

alej(E) t= (tg,...,t) (3.9)

where . ¢ R j=1,...,k and Al""’Ak are disjoint elements in A", The integral

of f with respect to X1

element of H™" given by

o...oxn denoted by anf(E) d(X1°'°-°Xn)(£)’ is the

k
L

S _f(dX,e...eX )(t) =
Tn_l n_jl

ajxlo...oxn(Aj). (3.10)
A real valued function f on ™ is said to be Xle...@Xn-'ntegrable i1f there

exists a sequence {fm} of A"-measurable simple functions on T" such that

mil

i) fm converges to f in X @...oxn-measure and

1

i1) 1lim an(lAfm)(E)d(Xl@...@Xn)(EJ =0 as sv(Xlo...@Xn;A) +> 0

uniformly inm = 1,2,...

PROPOSITION 3.1. Let £(t) t ¢ T" be an X;®...eX -integrable function and

{fm}m>1 be a sequence of An-simple functions satisfying (i) and (ii) above.

Then for every A ¢ Al (lAf)(E) is Xlo...oxn-integrable and the sequence

{4n(1Afm)(E)d(Xlo...@Xn)(g)}mzl

converges to an element in T uniformly in A ¢ A". The element '

4n(1Af)(E)d(Xlo...oXn)(E) = ;iﬂ 4n

is called the integral of f with respect to X

(1pf,) (Dd(X e, ..0X ) (1) ‘

o...@Xn over the set A.

1

e T T T I o T s e e T L ] AL et
r ) RO o Sy X e e T, B RS 3 RN
R R O TR s
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Proof. See ([10]) who proves it for any bounded vector valued measure.

The next result characterizes Xle...oxn—integrability in terms of the

measures Ul,...,un.

THEOREM 3.2. A real function f is Xlo...exn-integrable if and only if
2 n

fel (Tn,A ,ule...@un].

Proof. Assume f ¢ Lz(ule...eun), then there exists a sequence {fm} f

m>1 °
AM-measurable simple functions such that lfml < |f] a.e. d(u;e...en ) for
m > 1 and fm converges to f in Lz(pla...eun). Then by Corollary 3.3 fm

converges to f in Xle...@Xn-measure. Thus condition (i) in Definition 3.1 is

satisfied. p
Next for A « A" 1,(D)(f (1) - £ (1) = j§1 alej (1) for some o, < R
and Al""’At disjoint elements in A" Then
_ 2 ¢ 2
||an(1A(fm—fk))(9 d(X;®...0X)) (E)HH@n = lljg1 %3 (X1@"'°Xn)(Aj)||Hen
< § olu.e...@ A) =71, WIf (@) -f (t)lzd( ®...2)(t
e R e R S ()

which goes to zero as m,k + = for A ¢ A". Therefore for each A ¢ A"

lim fAfm(E)d(Xlo...@Xn)(E) exists. Next, since for each A ¢ A" and m >1
mrco

.ij: - 1Ath is a simple function, i.e. there exist a? j=1,...,£ and disjoint

elements A "AK of A" such that

17"

1,f (1) =

£
) a?IA_(g),
=l -~ 7

b I
- \' l.‘. c. Wt te
R e

then from (3.10) and the definition of sy(Xlo...oXn);A)

‘I

o 4
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L
11 (0. oK) O] gn = 11 L o X0, @I
m
= ||fm|| | Z TTTiTT; X,0...0X (A)||Hon < ||fm||wsv(xlo...oxn;A)

where

1€ 11, = swp 1HE @] = max(lal, ..., lo])
EsTn

Hence we have that for each m>1 f(.)f (t)d(X,e ..oXn)(E) is sv(Xlo...oxn,-)-con-
tinuous. Then by the Vitali-Hahn-Saks Theorem (Dunford and Schwartz [3])

(%&h%ﬂgﬁﬁlnﬁgQﬂlm+035wﬂf“ﬁ%$)+0

uniformly in m=1,2, Then condition (ii) in Definition 3.1 is satisfied
and hence f is X,®

1 ...@Xn—lntegrable.

Now assume that f is Xlo...oXn—integrable, i.e. there cxists a sequence
{fm}m>1 of A -measurable simple functions that satisfies conditions (i) and

(1i) of Definition 3.1.

_ oL
f(t-F (0 = T5_

Next, since for each k,m fm-fk is a simple function,
1aj Aj(g) say where aj e R j=1,...,£ and Al""’AZ are

disjoint elements in A" then for each A ¢ Al using Lemma 3.1(a)

llénlA(fh-fk)(E) d(xje...0X ) (D)]]°

AT

<4nlA(fm_fk)(E)d(X1°'"Oxn)(E)’

‘

& v
s LASYN

4n1A(fm-fk)(£)d (xle...oxn)(3)>H

o ..@Xn(AjlnA), xlo...oXn(AjznA);@n

i
Z M ® .eun”(n)(AjlnAn(AjznA) )

R ‘..._ R e ST ]
S .. L e .

- f v R NI . .

o e ’(\‘.‘._‘._‘J P T A S T N PR
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*

Next for each permutation Tl Tg defined in (3.7) is such that Tg n(TII;)n = ¢

for each permutation N* distinct from the identity permutation. Then for each

1 the above expression simplifies as follows

T (£ -£) (V) d(X1°"'°xn)(5Jl‘i@n =

o

)7 1 () (Ep(0-6(0) Ay o) (O

I

But from Proposition 3.1 if m,k + « |l%n(lA(fm—fk)(E)d(ch...@Xn)(E)I| converges

2
pen
to zero uniformly in A ¢ A", Then if S" = u TE
i
2
I 1 (O (E(0-HD) e o) () + 0 as mk »
and since the measures Hys--«sH, are non-atomic ule...eun((sn)c) = 0 which

implies that /|£ (£)-£,(£)|%d(ue...00 ) (1) > 0 as mk » =,

J
™
. . 2 .
Thus {fm}mz} is a Cauchy sequence in L (ule...@un) and since by
Corollary 3.3 fﬁ + f in Wy ®. . .8y -measure then f belongs to LZ(Tn,An,ulg...aun).
The proof of the theorem is complete.
Since the multiple integral [ f(E)d(XIQ---OXn)(EJ has been constructed

Tn

using the theory of integration w.r.t. vector valued measures this integral

inherits all properties from that theory including a dominated convergence
theorem (see [10) and [14]). Additional properties are also available for

this integral which uses the special structure of symmetric tensor product of

3 IIS*! ‘fjriiﬂﬂl

S

i

O

N

.

W~

N

Vo

...I‘.- .- - - -
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- . L P C I P AT TIE AR R T I A, . et - PG U
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- Xle...@Xn (see [14}). In particular we have the important properties of
-~ ?n f(E)d(X1°'°-°Xn)(E) being H™-valued (and hence EXP(H)-valued) and that for

L= n#m

S FOAKR- X ) (D), Ly 2D oK) (D> = 0.

o 4. PRODUCT STOCHASTIC MEASURES
;fgf We now apply the results of Sections 2 and 3 to the construction of a

(symmetric tensor) product stochastic measure.

THEOREM 4.1. Let (Q,F,P) be a probability space, T = [0,1], A = B(T) and
Xl,...,Xn be a system of n > 1 zero mean independently scattered measures on
;:: (T,A) such that Yt = (Xl(t),...,Xn(t)) is an n-dimensional stochastic process
. with independent increments, where Xi(t) = Xi((O,t]) for i = 1,...,n. Then
f%f there exists a unique LZ(Q)—valued Product Stochastic Measute X,®...8X on

(Tn,An) such that for Ai e A 1=1,...,n
Xl@...oxn(A1X...XAn) = Xl(Al)o...oXn(An). (4.1)

i The symmetric tensor product in RHS of (4.1) is an element of the space Ho"

o for H = Hg ® Hq where Hg and Hq are the Gaussian and generalized Poisson

spaces associated with the LZ(Q)-independent increments process Yt.

AR Proof. Let g teT be the n-dimensional Gaussian process with independent increments
Ej in the Levy-1t6 decomposition of Yt' Let a be the centered Poisson random measure
;‘ on (T x H{E, A x B(Hzg)) (ng = Bln\{O}) associated with the jumps of Yt and

e having o-finite control measure u. Define the Gaussian Hilbert space subspace

TS

'Ei of LZ(Q)

35 Hy = SP(a’Y(M): a e R”, A ¢ A} (4.2)

3
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where Y(A) = (XI[A)""’xn(A))’ and let Hq be the generalized Poisson Hilbert
space defined in (2.8) for (S,E,v) = (Tx RD, A x B(RD),u). Define the Hilbert
space of random variables H = Hg ] Hq which has inner product <o,y T E(+*).
Then for each i=1,...,n )(.1 is an orthogonally scattered measure on (T,A) with

values in H and control measure
_ . 2 -
u. (A) = E(X, (A))7, (4.3)
i 1
Then the theorem follows applying Theorem 2.2 and Theorem 3.1.

"he basic properties of the product stochastic measure X1®...@Xn are

presented in the following result.

LEMMA 4.1, let X

LEMMA 4.1 12

and A,B ¢ A define

.Xn and Xlo...@Xn be as in Theorem 4.1. For i,j=1,...,n

uij(A N B) = E(Xi(A)Xj(B))_ (4.4)
Then:
(i) E(X0...0X (A)) = 0 VAe Al

M 14 r - -1 i . n
(1i) \AR(xl@...@xn(A)) = (n!) % uln(1)®...®unn(n)(A n A O VAcAL

(iii) For A ¢ A" and B ¢ A"  (m<n)

COV(X;e...0K (A), Xo...0X (B)) = & (Ao,

-1
™) % Mnc)® - ®nn(n)

,
fiv) X @...@Xn is an L7(Q)-valued o.s.m. on (TH,AOn) with control messure given by

1
W14 = (nz)'lg B - By ) Ae AT,
(\) 1f Al""’An are pairwise disjoint sets in A
X (Ao (A = ) V& (). X (A
(vi) A real valued function f on T" is X1©...@Xn-integrab1e if and only if

.2 n
fe L5(T,A 8. ..o ).

Ol b b AR S Al St oA A2 Al e
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Preof. (1) - (iv) follow by Theorem 4.1, Lenma 3.1 and Corollary 3.1. (vi)
follows by Theorem 3.2. To prove (v) use the facts that Xl(Al),...,Xn(An) are

mutually orthogonal,

X (A)8...0x (A ) = (n V220 exp o (1 2,X (1))
“1Y17 T mY n ’ azl...Szn i=1~1 iV
2=0

and apply (2.14) together with (2.7) and (2.12). The proof is complete.

Using the notation of Definition 3.1, from Lemma 4.1(vi) and Theorem 10.8

in [10] (see also [14, Prop. 2.3.3])

INCH NS S [Tnf(g)d(xlg...@xn) (t)

S
is a continuous linear operator from L‘(u1®...®un) to LZ(Q). We will see how

this integral includes most of the known multiple stochastic integrals.

Consider the case of ''dependent integrators', i.e.
Uij(A) = Sij“(A) AeA

where (Sij) is an nxn non-negative definite matrix and u is a measure on (T,A)
satisfying the continuity property (It6 [7]). Let f be a special elementary

function on T" i.e.

f(t) = § a. .1 (t)
A s dq..01 0 TAL x L xAL o
R RERE ™ 1 " n Uiy i
where Al,...,g is a collection of disjoint sets in A and a. .... ¢ R
D 1,0
are zero unless il,...,in are all distinct. The linear manifold En of

special elementary functions is dense in LZ(Tn,An,uen) ([7]). For f ¢ En

define

LN T e T 1
R L A O T .
I N T O I T I T S S
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.{ﬂ}MRK. In Theorem 4.1 we have assumed that T is an interval of the real line.

J (£;%,,...,X ) = a. XL (AL )LLUX (AL D).
n 1 n . Z 1"'1n 1 1, nti

Following It& [7] (see also Fox and Taqqu [5]) we can extend this to a continuous
linear functional Jn: Lz(uan) > LZ(Q). This is the manner the multiple stochastic
integrals in [5], [7], [13] and [16] are constructed.

On the other hand, using Definition 3.1 and Lemma 4.1 (v), if f ¢ En

p
In(f;Xl,...,Xn) = a i )(1(:\.1 )@...@Xn(Ai )

. A | n 1 n

i i=1

1 n

p
- -1/2 = a1y 1/2 .
= (n!) . Zi 4 ail"'in Xl(“‘il)“'xn(“in) () g (X, X)),
17 I

Thus In and Jn are LZ(Q)-valued continuous linear functionals which agree (up
to a constant) on the dense linear manifold En and therefore thev agree on all
L3(1H’An’u®n) Then the method of constructing én f(E)d(Xle...@Xn)(E) gives
rise to the known "centered" multiple stochastic integrals, including

the multiple Wiener integrals of It6 [7], the multiple Poisson integrals of
Ogura [13] and Surgailis [16], and the multiple Wiener integrals with dependent
integrators of Fox and Taqqu [5]. This fact establishes a clear relationship

hetween the theory of vector valued measures and the theory of multiple

stochastic integrals.

This has been done in order to apply the Levy-1td decomposition of the process

Ve If we only consider the Gaussian or the Poisson case, then it will not be

necessary to impose this restriction on T. In these cases T can be taken quite

peneral (see [141]).
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5. COMPARISONS WITH OTHER PRODUCT STOCHASTIC MEASURES

Let (Q,F,P) and (T,A) be as in the last section. Let {Xl,...,Xn} be a
system of n>1 stochastic process satisfying the regularity conditions in |4].

Lngel and Kakutani (Engel [4]) have considered the extension of X x...xXn

1
{defined in (1.1)) to an LZ(Q)-valued product stochastic measure on the product
o-field A". Note that the condition (R4) in [4] imposes higher moments on the
Xi's. The idea of the proof of this extension (Theorem 4.5 in [4]) is to
partition the set ™ into disjoint pieces on which an appropriate LZ(Q)-valued
measure can be defined and then show that the sum of all these measures is the
required measure. This procedure uses a complicated double induction and
involves prior knowledge of what the measurc XIX...XXn should look like, cven
when the mean of each Xi is zero. On the other hand the construction of the
symmetric tensor product stochastic measure Xle...@Xn follows the more natural
ideas from the theory of product real valued measures and does not assume
higher moment conditions on the Xi's. Moreover, some of the combinatorial
problems involved in the construction of Xlx...xXn are absorbed in the definition
of symmetric tensor product. In [4] it is not assumed that the mean of each
Xi is 7ero as we have done in the construction of Xle...@Xn. This zero mean
condition is satisfied in many interesting cases and enables us to use Hilbert
space methods in the construction of the (symmetric tensor) product stochastic
measure Xl@...@Xn.

As well as differences in the assumptions and in the techniques used there
are also important differences between the resulting product stochastic measures
X *...xxn and X

1 1
4.1(i)) the measure X

@...@Xn. While the latter is always a centered measure {Lemma

x...xxn is not, even in the case when the mean of each Xi

1
is zero. For each permutation 1 of (1,...,n) let Tﬁ be as in (3.7). If




»
NN
AR

i
e e

-

25

Ae A" TR for some I then Xlx...xxn(A) = XIO...OXn(A) but in general they
are not equal (see [14]). As one can expect the Xlx...xXn measure of the
"diagonals" is not zero while the X1©...@Xn measure is (see (3.3)). Then it
is natural to expect that integrals w.r.t. Xlo...@Xn will be centered while
in the case of Xlx...xXn they will bhe uncentered. Integrals w.r.t. Xlo...@Xn

are easily constructed and the kind of X @...eXn-integrable functions can be

1
characterized. Engel [4] does not characterize the class of Xlx...xXn-integrable
functions. This last problem is not an easy one. A description of the class
of XxX-integrable functions was obtained by Rosinski and Szulga in [15]. The
last named authors have considered the product stochastic measure of an i.s.m.

X with itself in such a way that XXX(AleZ) = X(AI)X(AZ) (Al’AZ < A) can be

5
' 2 .
extended to an L°(2)-valued vector measure on A“, under the assumption

4 )
that X(A) - L' (Q) for A ¢ A. This corresponds to the case n=2 in [4].
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